Simplicial Matrix-Tree Theorems
نویسندگان
چکیده
Abstract. We generalize the definition and enumeration of spanning trees from the setting of graphs to that of arbitrary-dimensional simplicial complexes ∆, extending an idea due to G. Kalai. We prove a simplicial version of the Matrix-Tree Theorem that counts simplicial spanning trees, weighted by the squares of the orders of their top-dimensional integral homology groups, in terms of the Laplacian matrix of ∆. As in the graphic case, one can obtain a more finely weighted generating function for simplicial spanning trees by assigning an indeterminate to each vertex of ∆ and replacing the entries of the Laplacian with Laurent monomials. When ∆ is a shifted complex, we give a combinatorial interpretation of the eigenvalues of its weighted Laplacian and prove that they determine its set of faces uniquely, generalizing known results about threshold graphs and unweighted Laplacian eigenvalues of shifted complexes.
منابع مشابه
Cellular Spanning Trees and Laplacians of Cubical Complexes
We prove a Matrix-Tree Theorem enumerating the spanning trees of a cell complex in terms of the eigenvalues of its cellular Laplacian operators, generalizing a previous result for simplicial complexes. As an application, we obtain explicit formulas for spanning tree enumerators and Laplacian eigenvalues of cubes; the latter are integers. We prove a weighted version of the eigenvalue formula, pr...
متن کاملA ug 2 00 4 ACYLINDRICAL ACCESSIBILITY FOR GROUPS ACTING ON R - TREES
We prove an acylindrical accessibility theorem for finitely generated groups acting on R-trees. Namely, we show that if G is a freely indecomposable non-cyclic k-generated group acting minimally and D-acylindrically on an R-tree X then there is a finite subtree Tε ⊆ X of measure at most 2D(k − 1) + ε such that GTε = X. This generalizes theorems of Z. Sela and T. Delzant about actions on simplic...
متن کاملAcylindrical accessibility for groups acting on R-trees
We prove an acylindrical accessibility theorem for finitely generated groups acting on R-trees. Namely, we show that if G is a freely indecomposable non-cyclic k-generated group acting minimally and M-acylindrically on an R-tree X then for any ǫ > 0 there is a finite subtree Yǫ ⊆ X of measure at most 2M (k − 1) + ǫ such that GYǫ = X. This generalizes theorems of Z.Sela and T.Delzant about actio...
متن کاملTree Checking for Sparse Complexes
We detail here the sparse variant of the algorithm sketched in [2] for checking if a simplicial complex is a tree. A full worst case complexity analysis is given and several optimizations are discussed. The practical complexity is discussed for some examples.
متن کاملKnots and Graphs
A classical matrix-tree theorem expresses the determinant of some matrix constructed from a graph (principal minor of the Laplacian) as a sum over all spanning trees of the graph. There are generalizations of this theorem to hypergraphs or simplicial complexes [MV, DKM]. Some version of this theorem provides a formula for the first non-zero coefficient of the Conway polynomial of a (virtual) li...
متن کامل